- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Besar, Kalpana (1)
-
Chu, Yingli (1)
-
Dailey, Jennifer (1)
-
Jang, Hyun-June (1)
-
Katz, Howard E. (1)
-
Kymissis, Ioannis (1)
-
Li, Hui (1)
-
List-Kratochvil, Emil J. (1)
-
Shinar, Ruth (1)
-
Song, Jian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We summarize our recent results on material, device, and circuit structures for detection of volatile analytes in the atmosphere and proteins in aqueous solution. Common to both types of sensing goals is the design of materials that respond more strongly to analytes of interest than to likely interferents, and the use of chemical and electronic amplification methods to increase the ratio of the desired responses to the drift (signal/noise ratio). Printable materials, especially polymers, are emphasized. Furthermore, the use of multiple sensing elements, typically field-effect transistors, increases the selectivity of the information, either by narrowing the classes of compounds providing the responses, distinguishing time-dependent from dose-dependent responses, and increasing the ratio of analyte responses to environmental drifts. To increase the stability of systems used to detect analytes in solution, we sometimes separate the sensing surface from the output device in an arrangement known as a remote gate. We show that the output device may be an organic-based or a silicon-based transistor, and can respond to electrochemical potential changes at the sensing surface arising from a variety of chemical interactions.more » « less
An official website of the United States government
